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ON COMPETITION-MEDIATED COEXISTENCE*
ROBERT STEPHEN CANTRELL! AND JAMES R. WARD, JR.

Abstract. Two competing species, denoted B and C, currently inhabit a common habitat
patch. Left alone, B can be expected to exclude C from the patch over time. An exotic species A is
introduced into the patch. A competes with both B and C. Absent B, A can also be expected to )
exclude C from the patch over time, whereas absent C, A and B can be expected to coexist. Whether
or not the introduction of A into the habitat patch makes for the long-term coexistence of all three
species is examined in this article via reaction-diffusion models. It is shown that such an outcome
depends on the precise qualitative nature of the pairwise competitive interactions. In particular,
long-term coexistence of all three species cannot be expected in the case of Lotka—Volterra models
but can be expected for suitable modifications of such models.
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1. Introduction. In this article, we are concerned with an important topic in
theoretical ecology. Namely, does the introduction of an exotic species into an existing
community of species serve to enhance the long-term persistence of the community?
Here we address the question for the case in which the existing community consists
of two species and in which each of the three species competes with remaining two.
Our approach is through the analysis of models based on differential equations, chiefly
reaction-diffusion systems on a bounded habitat patch subject to absorbing (i.e., ho-
mogeneous Dirichlet) boundary data.

To be more specific, let us denote the exotic species as A and the resident species
as B and C. Then we shall assume that A and B coexist long-term in the absence
of C, that A drives C to extinction in the long term in the absence of B, and that
B drives C to extinction in the long term in the absence of A. Moreover, we as-
sume that these long-term outcomes are independent of initial populations or initial
population densities, so long as both initial populations are positive or both initial
population densities are nonzero. In particular, absent the introduction of A, the
existing community of B and C collapses to the single species B in the long term.

In order to speak of long-term persistence of a species or long-term coexistence
of the members of a community of species, we need a quantitative definition of these
terms. Since we are dealing exclusively with competitive systems, we assume that each
species exhibits a self-regulatory mechanism, meaning that its growth rate becomes
negative if its population or population density exceeds a threshold value, usually
called its carrying capacity. Consequently, the population or population density of
each species is bounded above long term by a value which is independent of its initial
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the set of initial data. It is clear that if this second requirement fails, permanence is
not possible. The first requirement is usually expressed as the acyclicity of #,, and
the corresponding sufficient conditions for permanence as the acyclicity theorem. If
7y is acyclic, Hale and Waltman [12] show that # is permanent if and only if the
second requirement obtains. If 7, fails to be acyclic, 7 can fail to be permanent even
if the second requirement holds. (See, for example, [16].) The article [10] contains
an accounting of the possibilities for {Mi,..., My} in the case of three-species com-
petition models employing ordinary differential equations. The w-limit set for 7, in
the situation under consideration in this article in the ordinary differential equations
setting can be expressed as {(0,0,0), (,0,0), (0,5,0), (0,0,€), M5}, where @,b, and ¢
are the carrying capacities for A, B, and C absent competition and My denotes the
w-limit set for the competition for A and B absent C. It is known that there exist
equilibria (aj,b1,0) and (as,b2,0) for = with 0 < a7 < a2 and 0 < b2 < b; so that
if (a,b,0) € Ms, then a; < a < as and be < b < b;. (This property is called com-
pressivity. The terminology is due to Hess and Lazer, who established compressivity
in the more general context of periodic-parabolic two-species competition systems.
See, for example, [14] and [15].) As follows in [10], 7, is acyclic in this situation and
permanence boils down to the second aforementioned requirement. (In the reaction-
diffusion setting, a precise analogue holds. We detail these results with references in
our next section.)

It is evident from the postulated outcomes of the pairwise interactions among
A, B, and C that {(0,0,0),(a,0,0),(0,5,0),(0,0,¢), Ms} is the appropriate decom-
position of the w-limit set of 7, for any suitable semiflow #n. However, verifying
conditions (i) and (ii) plus isolatedness, so that the acyclicity theorem can be used
to assert permanence, leads directly to conditions on the coefficients of the model
equations. Consequently, it is instructive to examine a specific set of model equations
at this time. To this end, let us consider the Lotka—Volterra system

uy = [a — u; — onpuz — cyzus)u,
(1.1 uh = [a — a21u; — Uz — Qagug|ua,
u3 = [a — ag1u; — a32us — usjus,

where u; denotes the population of species A at time t,us denotes species B, ug
denotes species C, and the coefficients are all positive constants. Since a > 0, each
equation in the system is linearly unstable at (0,0,0). Hence (0,0,0) is a strong
repeller (i.e., W*((0,0,0)) = {(0,0,0)}) so that it is isolated and satisfies condition
(ii). Moreover, if u? > 0 and u; solves

uf = (@ —u;)u;, t>0,
u;(0) = uf,

then u; — a as t — co. Consequently, the restriction of the model to any one
of the “edges” (u1,0,0),(0,us,0),(0,0,us) is globally attractive to an equilibrium.
Think now of linearizing the first equation about (0, a,0) and (0,0,a). We require A
to coexist with B and to drive C to extinction, and so we must have a — aj2a >
0 and a — ajza > 0, or equivalently a1 < 1 and a33 < 1. Similar consider-
ations show that we must require as; < 1 and ass < 1 in the second equation
and a3; > 1 and a3 > 1 in the third. Consequently, there is at least one di-
rection of growth at {(a,0,0)},{(0,2,0)}, and {(0,0,a)}. So {(a,0,0)},{(0,a,0)},
and {(0,0,a)} are isolated hyperbolic equilibria and satisfy condition (ii). Moreover,
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population or initial population density. (Of course, how long it takes for the upper
bound to go into effect does depend upon initial conditions.) For such systems, we take
long-term persistence or long-term coexistence to mean the existence of corresponding
positive asymptotic lower bounds. In the ordinary differential equations setting, this
requires that the population of each species under consideration exceed some fixed
positive value after some elapsed time and remain above this fixed value thereafter.
(The length of the elapsed time depends on the initial state of the system.) In the
reaction-diffusion setting, since we impose an absorbing condition on the boundary
of the habitat patch, it is not possible for the population densities in question to
exceed a positive value on the entire patch. Consequently, we understand the positive
asymptotic lower bound in this case to be a fixed smooth function, positive on the
interior of the habitat patch and vanishing on its boundary, with its outward normal
derivative negative at each point of the boundary of the habitat patch. When such
positive asymptotic lower bounds exist, we say that the system in question is uniformly
persistent or permanent. Uniform persistence or permanence is the definition of long-
term persistence or coexistence that we shall employ throughout this article.
General three-species competition models have been studied in both the ordinary
differential equation and reaction-diffusion settings, and there is now a good under-
standing of when such systems are permanent. (See, for example, [10] and references
therein in the ordinary differential equations case and [8] and references therein in the
reaction-diffusion case.) The approach here is to view the solution trajectories (which
necessarily exist for all time by the self-regulatory assumptions) as forming a semidy-
namical system 7 on the space of initial data (R2 = [0,00) X [0,00) x [0,00) in the
ordinary differential equations case; [C3(€2)+]? in the reaction-diffusion setting, where
€ is the habitat patch and C}(Q) is the cone of nonnegative smooth functions on €
which vanish on the boundary of ). The aforementioned asymptotic upper bounds
on the components of such a system guarantee that « is what is known as point dissi-
pative, and the theory of differential equations guarantees that, for any fixed positive
value of t,7 is a compact map on the space of initial data. (See, for example, [13].)
Dynamical systems theory [4] then guarantees that 7 admits a global attractor, i.e., a
compact, invariant set A for = to which any trajectory becomes and stays arbitrarily
close after some elapsed time (dependent upon initial data). Permanence or uniform
persistence as we have defined it follows if (i) the intersection of A with the interior
of the space of initial data, say .A’, is uniformly bounded away from the boundary
of the space of initial data (essentially the so-called extinction states where at least
one of the populations or population densities vanishes); and (ii) any trajectory with
initial data in the interior of the space of initial data approaches 4’ as time tends to
infinity. (See, for example, [5] and [7].) Pioneering work by Freedman and Waltman
(10], [11] and Hale and Waltman [12] shows that these criteria are met if the omega
limit set of the boundary of the set of initial data (which is invariant under 7) can
be written as a finite union UF_; M,, of compact invariant sets (isolated for 7 and
for the restriction w, of = to the boundary of the set of initial data) meeting two
requirements. The first requirement (i) is that when considered as compact invariant
sets for the semiflow 7, there is no subcollection {Mj,,...,M; } of {Mj,..., My}
so that the intersection of the unstable manifold of M;, (W™(MM;;)) with the stable

manifold of M;; ,(W*(M;,,,)) is nonempty for i = 1,...,r, where M; _,, = M;,.

This requirement says that there is no way to chain this collection of sets together
via orbits for ;. The second (ii) is that the stable manifold for M,, n = 1,...,k,
when viewed as a compact invariant set for w, contains no element of the interior of
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the set of initial data. It is clear that if this second requirement fails, permanence is
not possible. The first requirement is usually expressed as the acyclicity of #,, and
the corresponding sufficient conditions for permanence as the acyclicity theorem. If
#tg is acyclic, Hale and Waltman [12] show that # is permanent if and only if the
second requirement cbtains. If 7, fails to be acyclic, = can fail to be permanent even
if the second requirement holds. (See, for example, [16].) The article [10] contains
an accounting of the possibilities for {Mi,..., My} in the case of three-species com-
petition models employing ordinary differential equations. The w-limit set for 7, in
the situation under consideration in this article in the ordinary differential equations
setting can be expressed as {(0,0,0), (,0,0), (0,5,0), (0,0,¢), M5}, where @,b, and ¢
are the carrying capacities for A, B, and C absent competition and My denotes the
w-limit set for the competition for A and B absent C. It is known that there exist
equilibria (az,b1,0) and (as,b2,0) for # with 0 < a1 < a2 and 0 < be < by so that
if (a,b,0) € Ms, then a; < a < ag and be < b < b;. (This property is called com-
pressivity. The terminology is due to Hess and Lazer, who established compressivity
in the more general context of periodic-parabolic two-species competition systems.
See, for example, [14] and [15].) As follows in [10], 7, is acyclic in this situation and
permanence boils down to the second aforementioned requirement. (In the reaction-
diffusion setting, a precise analogue holds. We detail these results with references in
our next section.)

It is evident from the postulated outcomes of the pairwise interactions among
A, B, and C that {(0,0,0),(a,0,0),(0,5,0),(0,0,¢), M5} is the appropriate decom-
position of the w-limit set of n, for any suitable semiflow . However, verifying
conditions (i) and (ii) plus isolatedness, so that the acyclicity theorem can be used
to assert permanence, leads directly to conditions on the coeflicients of the model
equations. Consequently, it is instructive to examine a specific set of model equations
at this time. To this end, let us consider the Lotka—~Volterra system

U} = [a — w1 — 12Uz — o3usfug,
(1.1) ’LL'2 = [CL - (21U — Ug — a23’lL3]U,2,
uy = [a@ — ag1u; — azaus — uglus,

where u; denotes the population of species A at time t,us denotes species B, us
denotes species C, and the coefficients are all positive constants. Since a > 0, each
equation in the system is linearly unstable at (0,0,0). Hence (0,0,0) is a strong
repeller (i.e., W*((0,0,0)) = {(0,0,0)}) so that it is isolated and satisfies condition
(ii). Moreover, if u? > 0 and u; solves

u, = (a—u;)u;, t>0,

then u; — a as t — co. Consequently, the restriction of the model to any one
of the “edges” (u3,0,0),(0,us,0),(0,0,us) is globally attractive to an equilibrium.
Think now of linearizing the first equation about (0, a,0) and (0,0,a). We require A
to coexist with B and to drive C to extinction, and so we must have a — a2a >
0 and a — aj3a > 0, or equivalently aqo < 1 and a3 < 1. Similar consider-
ations show that we must require as; < 1 and asz < 1 in the second equation
and a3; > 1 and asze > 1 in the third. Consequently, there is at least one di-
rection of growth at {(a,0,0)},{(0,a,0)}, and {(0,0,a)}. So {(a,0,0)},{(0,a,0)},
and {(0,0,a)} are isolated hyperbolic equilibria and satisfy condition (ii). Moreover,
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{(0,0,0), (a,0,0),(0,a,0),(0,0,a), Ms} is acyclic (condition (i)). Letting ug = 0 in
(1.1), it is easy to see that

(u1,up) = (

is the only equilibrium to

a(l —az2) a(l —an)
1— o9’ 1— ajeam

12) u) = [a — u1 — a2us]us,
u'2 = [CL - Qg1 Uy 'UQ]'LLQ

with both components positive, and it is not hard to show that

a(l —a12) a(l—a2)
MS = s 3 -
1 —aipae; 1 —aipam
Therefore, permanence obtains for (1.1), provided that the third equation is linearly
unstable at

<a(1 — o) ol — ) o) .

1— o091’ 1 —ajeag’

For such to obtain, we need

(l-am) a“—o (1-—0(21)

a — Qg1
1 —ajpan 1 — ais0m;

a >0,

or equivalently

as1(1 — ai2) + aza(l — ag) <

1.
1 —ajoan

But

az1(1l — 012) + aza(l — as) N l—ap+(l-ay) 2-opp—an
1 - ajpan 1 — agsas 1~ o0
Since a12 < 1 and a9y < 1, @y2(l — ag1) + as1 < 1, which implies —ajsa9; <
1— a9 — a9 or 1 — qatve; < 2 — g2 — ara1. Hence
2—a13 — o
12 21 4
1 —ajpan

and so

g Gel—ou)  aga(l—am)

a<0
1— ajoom; 1—ajsan ’

and (1.1) fails to be permanent.

The problem with (1.1) is that the combined populations of A and B at their co-
existence equilibrium exceed the carrying capacity of either A or B, a common feature
of stable Lotka—Volterra models. (See [3, p. 354].) So the effect of the competition
between A and B is not strong enough to provide a “slot” for C. Geometrically, the
coexistence state

(a(l —a12) a(l - as) )

1— aisae’ 1 — apan
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lies above the line segment joining the extinction states (a,0) and (0,a). There have
been numerous investigations of the relative positions of coexistence states and ex-
tinction states in the biological literature. These are intimately connected with efforts
to distinguish various forms of competition, such as interference and exploitation, and
with efforts to address various drawbacks in Lotka—Volterra interactions. (See, for ex-
ample, [1], [3], [17], [18], [20].) In [3], Ayala, Gilpin, and Ehrenfeld fitted a number of
phenomenologically derived alternatives to Lotka—-Volterra interactions to data from
two competing species of Drosophila, finding several that match the data much better.
One such would add —fiu1us to the per capita growth law in the first equation of
(1.1) and —Baujus in the second, yielding the system

uy = [a — u1 — oous — Prusus — ai3uglul,

/
1
(1.3) ’LLIQ = [a - 91U — ﬂg'U,IUg - U9 ~ CYgg’LLg]Ug,

ufy = [a — agiu1 — azous — uglus.

Let us consider (1.3) with £; = f2 = 8 > 0. The analysis regarding {(0,0,0), (e, 0,0),
(0,a,0),(0,0,a)} is the same as for (1.1). In particular, A and B coexist, provided
that ag2 < 1 and aa; < 1, independent of 3. This phenomenon reflects the fact that
a12us and a1aus+ Puius are very nearly equal for u; small for us in bounded ranges of
positive values, in particular for us near a. However, § has a definite effect on the lo-
cation of Ms, for if (u1,uz) is a componentwise positive equilibrium for the subsystem
of (1.3) which results from setting ug = 0, a — u; — 02u2 = Busls = @ — Q21U — Uz,
which implies that ug = (%:—2—3;)1“ It follows that Ms = {(%1(8),%=(0))} =

2,3(1 — 0121)
—(1 — ag902) + /(1 — ar2021)? + 4af(1 — a1 )(1 — 012)) } .

{ (“(1 — a12a91) + /(1 — a12091)% + 4aB(1 — a1 )(1 — 12)

Qﬁ(l — alz)

Asymptotically, both components are proportional to —ﬁ, and an easy calculation
shows that

i, {(2(0) ()} = { (F o), 20 ]t

B—0+ 1— o0’ 1 — appam

So if @, ayn, 21, 31, and ago are fixed, a — 3171 (8) — as2@2(B) > 0 for B sufficiently
large. For such values, (1.3) is permanent and the introduction of species A serves to
preserve the preexisting community, whereas it does not for (1.1).

The preceding might suggest to the reader that the failure of (1.1) to be perma-
nent is connected somehow with the assumption that all three species have the same
intrinsic growth rate a. However, such is not the case. Indeed, any Lotka-Volterra
model capturing our basic assumptions about the outcomes of the pairwise species
interactions for A, B, and C will fail to be permanent. (We leave the modification of
the proof to the interested reader.) Consequently, this form of competition-mediated
coexistence contrasts with that in the so-called cyclic case (A drives B to extinction
absent C, B drives C to extinction absent A, C drives A to extinction absent B,
independent of (nontrivial) initial data), where permanence is sometimes possible for
Lotka—Volterra dynamics. (See, for example, [19].) Indeed, for appropriate choices of
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parameters, permanence results obtain in the cyclic case with Lotka—Volterra dynam-
ics in the reaction-diffusion setting with absorbing boundary conditions [§]. The same
can also be said of the companion phenomenon of predator-mediated coexistence. (See
[8], [11], for example.)

The body of this article is concerned with establishing competition-mediated co-
existence for the situation we have described in the setting of reaction-diffusion models
over bounded habitat patches subject to absorbing boundary data. To this end, we
show first by the acyclicity theorem that permanence fails to obtain for Lotka—Volterra
models over a range of parameter values. Then by modifying the competitive inter-
action between A and B by adding the term —Biujus to the equation for A and
the term —fsuju3 to the equation for B, we obtain competition-mediated coexis-
tence, again using the acyclicity theorem. The reaction-diffusion case is considerably
more difficult mathematically than is the ordinary differential equations case, since
direct calculation is much less useful than in the analysis of (1.1) or (1.3). Con-
sequently, we will need more conditions on the parameters of the system than was
the case before. However, we still obtain competition-mediated coexistence for a
range of parameter values, so the results are fairly robust. In the ordinary differen-
tial equations case (1.3), conditions for permanence were expressed in terms of the
instability of the zero solution for certain linearized equations associated with the
original system, the instability itself expressed in terms of the positivity of certain
combinations of the system parameters. These combinations may be regarded as
eigenvalues for the one-dimensional linear operators given by the right-hand side of
the linearized equations. (For example, if one has the equation v’ = ou, « is the
eigenvalue of the linear operator v — cu.) In the reaction-diffusion setting, we ex-
press conditions for the instability of the zero solution of the relevant equations in
this way, as the right-hand sides are now given by linear elliptic operators. In either
case, the instability conditions should be interpreted as an expression of invasibil-
ity.

The rest of this article is structured as follows. In section 2, we show that the fail-
ure of (1.1) to be permanent extends to the reaction-diffusion setting for appropriate
ranges of parameter values. We also obtain some crucial upper bounds on the compo-
nents of component-positive equilibria to the diffusive analogues of the subsystems of
(1.3) which arise by letting C vanish. We use these estimates in section 3 to establish
permanence (i.e., competition-mediated coexistence) in the reaction-diffusion setting
for a range of parameter values. Finally, we offer some conclusions in section 4.

2. Mathematical background. Consider

du
—B—tl- = Auy +urfe — u1 — (c2us + frusuz) — aisusg),
6’&2

(2.1) 5 = Aug + usla — (@21ug + Pauius) — us — aagus],
0
% = Aug + u;;[a’ - (g1 U] — Q39U — ’u,3}

in € x (0, co) subject to
Uy = 0= Uog = U3

on 60 % (0, ).

Assume
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(i) @ = a’ > A1, where A = Ay > 0 is the unique real number so that the eigenvalue
problem

—A¢ = A in Q,
¢ =0 on 94}

admits a solution ¢ > 0 on €.

(i) a2, 013, 21,23 € (0,1).

(111) az; > 1, ass > 1.

(IV) ﬁl z 07 .62 > 0.

Our first observation is that condition (i) guarantees the long-term survival of
any one of the three species in the absence of the other two. Indeed, it is well known
[9] that a > A; implies the existence of unique 6, > 0 so that

—AO, =0,a—06,] inQ,

2.2
@2) 6,=0 on 95}

and so that for any nonnegative nontrivial continuous initial data ug(z) on (, the
solution u(z,t) of

@-:Au—l—u[a—u] in  x (0, 00),
ot
(2.3) u=0 on 90 x (0, c0),
u(z, 0) = ug(z) on )

has the property that u(z,t) converges to #,(z) as t — co, uniformly for z € Q.
Additionally, if Ay < a3 < as, it follows from direct inspection of (2.2) that §,, is a
strict subsolution for (2.2) with @ = as and hence that 6,,(z) < 64,(z) for z € Q.
Observe now that condition (i) is equivalent to the positivity of o and ¢’, where ¢
and ¢’ are the unique values so that

Ap+ap=0¢ inQ,

2.4
@4) ¢=0 on 9}
and

A+ a'th = o' in Q,
(2.5)

P=0 on 90

admit solutions ¢ > 0 and ¥ > 0 in Q. Having o > 0 may be interpreted as saying
that a species with density u; can invade Q in the absence of the species with densities
us and us and that a species with density us can invade Q if u; = 0 and uz = 0.
Likewise, having ¢/ > 0 may be interpreted as saying that a species with density
uz can invade €, provided that u; = 0 and us = 0. Consequently, the invasibility
conditions given by ¢ > 0 and ¢/ > 0 in (2.4) and (2.5), respectively, imply that
{(8,,0,0),(0,6,,0),(0,0,68,)} represent the global attractors for (2.1) restricted to
the “edges” {(u1,0,0), (0, u2,0),(0,0,us)}, respectively.
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Now consider the subsystems of (2.1) which result when either us or u; is absent,
namely,

% = Auy + uia — u1 — asug),

(2.6) %3 Aus + e’ —amum —us] im0 x (0,00),
up =0 =ug on 8Q x (0, co);
aautz = Aug + usa — us — aozug),

(2.7) —(%ti = Aug +ugla’ — azaup —ug] in O x (0, c0),

us = 0 = ug on 99 x (0, 00).

Since a’ < a and o153 < 1 < a1, Theorem 2.1 of [6] implies that there is no equilibrium
solution to (2.6) with u; > 0 and us > 0. Since ai3 < 1, the value of 013 so that

Ap+(a— 01300)p = 0136  inQ,
(2.8) =0 on 09,

¢o>0 in
admits a solution is positive. (To see that such is the case, note that a—a130, > a—0,
and that, for p = 0,
AYp+(a—0)0=pp inQ,
=0 on 99

admits the solution % = 6,. Hence o3 > 0 by a standard comparison argument.)
Therefore, Lemma 3.3 of [8] asserts that any solution to (2.6) with u;(z,0) > 0 and
ug > 0 converges to (0,,0) as t — oo, uniformly for z € . Since as3 < 1 < agy, a

completely analogous result obtains for (2.7).

Now consider the subsystem of (2.1) resulting from the absence of the species
with density us:

Ou
ﬁl- = Aug +ufa — w3 — (a1pus + fruius)],

2.9 Oug
( ) atr) AU,Q + UQ[G, — (Q’.?.lul + ,Bg'u,lu;)) - ’U,r_)] in ) x (0, OO),

u =0 =u

™)

on 02 x (0, 00).

Since a2 and oy both lie in the interval (0,1), the value of oy, 1=1,2,j #1,is
positive when

At + [a — 00|t = 035%; in 4,
;=0 on 9}

(2.10)
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admits a positive solution 1;. Consequently, Theorem 5.3 of [7] guarantees that (2.9)
is permanent. However, saying that (2.9) is permanent is not the strongest general
statement that we can make regarding the system. Indeed, it follows from Theorem
33.3 of [14] that there are equilibrium solutions (u;,%,) and (%,%2) of (2.9) with
u; < Ty and uy > Ty S0 that if (u1,u2) lies on the global attractor for (2.9), then
uw <up <% and Ty < ug < up. If B = P2 = 0, Theorem 3.2 of [9] implies that
u; = Uy and uy = Us. (Indeed, we shall see that such remains the case when (; and
B> are positive, provided that §; = fs.)

Let us concentrate for the moment on the case 8; = > = 0. Theorem 3.2 of [9]
in fact tells us that

o 1-—0110 1"&21
——— =0,
1—ajoam

Now, since a3; > 1 and ags > 1,

1-—ajs 1—ay 2— a2 — a9
agy | ———— | + Qa2 > .
1 — a0 1 — ajeas 1— a0

This last exceeds 1 since aja(l — 1) + a2 < 1. Consequently,

l-a 1—o 2— g —
a1 | T ot ane (7 ) ba 2 (T ) Oa
1 — ajoae; 1—aaan 1 — ajoo;

and o3 < 0 when

A+ [a’ —as (—i:ai-> 0o — 032 (__1_—_@2_1__) 94 P = o31) in €,

1—apon 1 — appan

=0 on 99

admits a positive solution. Consequently, the species with density us cannot be suc-
cessfully introduced in small numbers when the u; and us densities are close to their
coexistence states, and as previously noted (2.1) fails to be permanent.

Let us now examine (2.9) in the case (1, 82 > 0, beginning with the special case
p1 = B2 = B. Let us look for an equilibrium solution with ug = cuy, where, of course,
¢ > 0. This requires

~Auy = uz[a — U1 — ayacul — ﬁcu%],

—A(cuy) = curfa — cuy — asug — Beul] in Q.

Consequently, there exists such a solution provided that 1 + ajec = ¢+ a9, Qr
equivalently ¢ = 1=221 and

1—ai2
1 — ajaa (1—amn) , .
_ = Y Rt bt B S A Q
(2.11) Au =t {a ( 1 -0 >u1 ﬁ(l-aw)ul} e
u; =0 ondQ

admits a positive solution. As was the case with (2.2), (2.11) admits a positive solution
u*, provided that a > \; or equivalently o in (2.4) is positive.




1320 ROBERT STEPHEN CANTRELL AND JAMES WARD, JR.

Supp(?se now that (ui,us) is a componentwise positive equilibrium solution of
(2.9), again under the assumption that #; = fs = 5. Observe that

A (w - (1 ‘“21> ul)
1—ap

= U2[a = Q21U1 — Uz — ﬁulufa] - <

1—an

U@ — U — -
1—a12) 1]a— w1 — arpuy Buyus]

- (o ) (- (22

1—ajq

- [Ug + <0121 — Q9 (1 —a21>
1—ags
- 1— a9y
= (a — Bujug) | ug —
9 Qo1 — Q12 1— a9
S Py BN Rt el - 2 2
i () e - (1252
1 e
= (a — Buyus) <u2 - ( a21> u1>
1—aia
1— gy —(1— _
— [ug + ( a1z — (1 —an) Uyty — 1—-ag o2
1-aje 1—ai
= (a — Bujug) (uz - (1 — a21> Uq
1- Q19

5 1—-6291 1—ao
— | U5 + uug — = — = 2
[ 2 1U2 (1_a12>u1uz (1_a12)u1]

= (a — fuus) (uz - <1 — am) Uy
1—-ai2
- [(Uz +ug) (Uz - (1 : Zi;) u1)
= (a ~ Bruruz — ug — us) (uz - (1 — a21> u1> .
1 a9
Hence )

1—as 1—
(—A+ Burus +uy + ug ( - = = - el ‘
1U2 1 ’Uﬂ) Uz 1= crng Uy a | ug 1— o, Ui j, J

so that either ug = (%{%ﬁ) u3 Or a is an eigenvalue for the operator —A <+ Bujus +
u1 -+ us. So now suppose that - is such that

(—A + Puiug + ug + ug)w = yw in 2,
w=1_0 on Q)

admits a solution with w > 0. Multiplying the equation by u; and integrating we find

/u1(~Aw) + /ul(ﬂuw@ + Uy + ug)w = 'y/ UIW.
Q y) Q
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Integrating by parts via the divergence theorem implies that
/ ui(a — ug — aiguz — Burus)w
Q

+/ u1(Bugus + w1 + u2)w = ’y/ Uyw.
Q Q
Therefore

/g;ulw(a + (1 — aqg)us) = 'y/Qulw.

Since us > 0 and 1 — aj2 > 0, the left hand side exceeds a fQ uiw, which implies

that v > a. Consequently, a cannot be an eigenvalue for the operator —A + Puyus +
1—an

u; +Us and ug = (———) u;. Consequently, if B1 = 2 = f, (2.9) admits the unique

102
componentwise positive equilibrium solution (u*, (%}%ﬁ)u*), where u* is the unique
positive solution to (2.11), which exists when a > A;. We shall shortly see that in this
case that we can find upper bounds on u* sufficient to show that (2.1) is permanent
for a’ and § sufficiently large.

Let us now consider (2.9) in the case of ; > 0 and f2 > 0, f1 # (2. It is now
not necessarily true that (2.9) admits a unique componentwise positive equilibrium
solution, let alone one with its components constant multiples of each other. However,
we do know from [14] that (2.9) is compressive, and hence that its w-limit set is
contained in the set {(u1,us) : u; < u1 < Wi, Uy > Up > Up}, Where (uy,uy) and
(%1, Ta) are componentwise positive equilibrium solutions to (2.9). We can sometimes
use knowledge of the case 8; = B2 to obtain upper bounds on %; and u, in terms of
u* (for appropriate choices of ay9,1, and ). Then by estimating u* from above,
we can give conditions for permanence in (2.1). To this end, suppose without loss
of generality that #; < f and let (u1,u2) be a componentwise positive equilibrium
solution to (2.9). Then

—Auy > uzfa — ug — a12uz — Paugusl,
(2.12)
—Aus < Us [a — Q91U — Uy ~— ﬁg’l&ﬂig] in Q.

Now let ¢ > 0 satisfy —Ad = \¢ in Q with ¢ = 0 on 9Q. Let (iia, @2) = (€9, a).
Then

—Afiy < iiz[a — Gy — a12lia — Paliyiia],
(2.13)
—Afdig > fisfa — a1ty — U2 — Poilla@iz] in £,
provided that
e = —A(ed) < edla — e¢ — arza — Praed),
which holds for & > 0 sufficiently small, provided that
(2.14) A1 < (1 - ers)a.

Since the strong maximum principle implies that ¢ and u, have negative outer normal
derivatives at each point of 8%, it follows that e¢ < wu; for small enough £ > 0.
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Additionally, us < a by the usual maximum principle. Consequently, we may apply
the method of upper and lower solutions as in [9] to assert that there is a solution of
—Au = ula — u — @120 — fouv],
(2.15) ~Av=v[a—anu—v— Bauv] in Q,
u=0=7v on Q2

with 4 < u < u; and us < v < a. We know that (2.15) has only one such solution
and hence

(2.16) up < <1 - a21> u*(Ba),

1—ap

where u*(f2) denotes the unique positive solution of (2.11) when 8 = fBs.
Consider once again a componentwise positive equilibrium solution to (2.9). Then

(2.17) aous + fougus < Go1u + Bruaus
for some &9; € (@91,1) if and only if

(B2 — Br)ua < Go1 — a1.
Consequently, (2.17) will hold for some Go; > a1, provided that

(2.18) By~ < L= 02),
a

So let (2.18) hold and choose &a; so that (2.17) holds. Then

(2.19) —Auy < ygla —ug — arous — Prusus),
—Aug > usla — Go1u; — uz — frugus] in Q,

and if (’ﬁ,l,’fl,g) = (0., 6¢),

(2.20) —Ad; 2> d1fa — 1y — anatle — P11,
—-A’llg S ﬁg[a - &Qlﬂl - ﬁg - ,31’27,1’122} inQ

for £ > 0 sufficiently small, provided that

(2.21) a(l — d&a1) > M.

In case (2.18) and (2.21) hold, there must be (4, #) solving

(2.22) —A? = dla — Gl — 9 — f10D] in Q,
th=0=17 on 912,
with u; <4 < a and e¢ < % < uy for € small and positive. Once again, we know that
there is only one componentwise positive solution to (2.20), and hence
(2.23) u < (f),

where %*(f31) is the unique positive solution to (2.11) when 8 = £; and as; is replaced
by G2;. Summing up, we have the following theorem.

THEOREM 2.1. Suppose that (2.14), (2.18), and (2.21) hold, and let (u1,u2) be a
componentwise positive equilibrium to (2.9). Then u, satisfies the estimate in (2.23)
and us satisfies the estimate in (2.16).
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3. Permanence results. Recall that in the previous section we demonstrated
that if 81 = 0 and B = 0, then (2.1) fails to be permanent for any choice whatsoever
of the remaining parameters so long as (i), (ii), and (iii) are met. In this section, we
show that (2.1) is permanent when

(3.1) © ap— 1< (fe—Br)a<1—ann,

provided that @', B, and s are sufficiently large. What happens here is that by mak-
ing the competition between the two stronger competitors more severe at intermedi-
ate to large values of their densities, we effectively lower their asymptotic coexistence
states enough to make possible a successful invasion by the weaker competitor. This
phenomenon fails to occur in the Lotka—Volterra case (81 = 0, 82 = 0).

Let us first consider the case 81 = > = . From the preceding section we have
that the conditions for applying the Hale-Waltman acyclicity theorem in order to
obtain permanence will be met, provided that ¢* > 0 when

1—an
1—ays

¢*=0 on 99

(32) Ag* + {a’ — az1u* — Qg2 (

admits a positive solution, where u* is the unique positive solution of (2.10). The
maximum principle implies that

_(1—opzan n 1— 909\’ +4a 1 —am 3
1—a1s 1—ais 1—a
u* <
=
1—as
. -—-(1 — alga’g‘_[) -+ \/(1 — (1120[21)2 -+ 4a(1 - 0121)(1 — alg)ﬂ
- 2(1 —_ agl)ﬁ )

Consequently, we have that (2.1) is permanent, provided that f; = f2 = §, so long
as ¢** > 0 when
(3.3)

1—a
Ag+ {a'—— <C¥31 + a3 (1-O:'1.>)>

—(1 — aizan1) + /(1 — aqoam)? + 4a(l — a )(1 — 012)B .
X[ 2(1 — a21)B }}d)—a »

where ¢ > 0 satisfies A¢ + M1 = 0 in Q with ¢ = 0 on 99Q. The definition of ¢
implies that

1._
o =da — X\ — <a31+0132< a21>>
1—ai»

y {“(1 — a12a91) + /(1 — @12001)? + 4a(1 — a12)(1 - azl)ﬂ} ]

(3.4)

2(1 — azl)ﬁ
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From (3.4), we find that o** > 0, provided that

a< {,3[ (1 —o12)(1 — o) }(a’-—/\l)

(e31(1 — a12) + a32(1 — a91))?
(1 — aga0m1)
o31(1 — ai2) + asi1 (1 — as)

(3.5)

}(a' — A1)

It is clear from inspection that (3.5) holds, for example, for any a’ > ); provided that
(3 is large, and for a = a’ large enough, provided that

[ (1 - (112)(1 ad agl)
(31(1 — a12) + az2) (1 — a9;)?

(1 — ag2a1) 1
az1(l — aiz) + az1(l — as) )

](a’——/\l)—F

s

When B; is no longer assumed equal to fs, recall that our knowledge of the
asymptotic behavior of the subsystem (2.9) in the u; — uo variables is less precise
than in the case f; = fB2. Namely, we know that (2.9) is compressive but we do
not know that it has a single globally attracting componentwise positive equilibrium.
However, when (3.1) holds, we showed in the previous section that we can get upper
bounds on the components of any componentwise positive equilibrium solution to
(2.9). Since compressivity of (2.9) means that it has a global attractor contained in a
order interval with endpoints componentwise positive equilibria, such upper bounds
provide a “worst case” for the competition the species with density ug faces if it tries
to invade the ujus-system (2.9) long after it has been established. This enables us
to give conditions under which (2.1) is permanent. More specifically, suppose that
0<fBe—p1 < -1—‘7:‘11 Choose &9 € (a91,1) so that fs — 81 < é—ﬂ-;—"‘zl Then for any
equilibrium solution (uy,us2) of (2.9), so long as a(l — &9;) > A; and a(l—aga) > A,
uy < @*(B1), where @*(B;) is the unique positive solution to (2.11) with 8 = B; and
a9y replaced with Gy, and us < (%—:%;)u* (B2), where u*(fs) is the unique positive
solution to (2.11) with § = fa. It follows as in [2] that no componentwise positive
state (u1,u2,us) lies in the stable manifold of the global attractor to (2.9), provided
that o# > 0 when

1—0&21

Ag# + [a’ —az10"(B1) — a3 ( ) U*(ﬁz)} ¢# =o*¢#  inQ,

¢o#* =0 on 69

(3.6) 1-a

admits a positive solution. Consequently, the hypotheses of the Hale-Waltman acyclic-
ity theorem are met, and we may conclude that (2.1) is permanent, provided that
o# > 0 when (3.6) admits a positive solution. (A precisely analogous result can be
formulated when 0 < #; — 2 < 1%13) Now, as before,

@*(Br) < —=(1 = 012691) + /(1 — @12821)2 + 4a(l — a2 )(1 — a12) B
B 2(1 — @91)p1

and

w(B) < —(1 = @12091) + /(1 — a12021)? + 4a(l — az1) (1 — a12)05
T 2(1 ~ a91)P2 :
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Consequently, (2.1) is permanent, provided that o## > 0, when
(3.7)
Ap+4d — as —(1 = a19891) + /(1 — Cl’125¥2—1)2 +4a(l— a1)(1 — a12)B1
2(1 ~ @x)b

s (—-(1 — a10a91) + /(1 — c12091)% + 4a(l — an )(1 — 012)ﬁ2> } P
2(1 — a12)B2

where Ag + Mg = 0 in Q with ¢ = 0 on 9§). We have established the following
theorem.

THEOREM 3.1. Suppose that (3.1) holds.

(i) IfO < (,82—,81)(1 <l—@9, @9 € (agl, l) s such that ﬁz-ﬂl < (&gl—agl)/a,
a(l —a12) > A1, and a(l — &o1) > Ay, then (2.1) is permanent if o## > 0 in (3.7).

(i) Fa;e—1< (B2—P1)a< 0, @12 € (a12,1) is such that Bi—Fs < (&12-a12)/a,
a(l — @12) > A1, and a(l — ag1) > A1, then (2.1) is permanent if c### > 0 when
(3.8)

Aj+ {a' o (-(1 — agp0m1) + /(1 — @12a91)? +4a(l —an)(1 — Oél:))ﬂl)

2(1 — a91)P1

B —(1 = @120a01) + /(1 — G12091)? + 4a(l — @91 )(1 — &12)fa é
32 2(1 — G12)Pe

= gH### g,

where ¢ is as in (3.7).

4. Conclusion. It is evident from the preceding discussion and analysis that in
the scenario we have postulated for species A, B, and C, whether the introduction
of A into the preexisting community results in its long-term preservation depends
very much on the particular forms of the pairwise interactions. The crucial factor is
whether the competition between A and B reduces their populations or population
densities sufficiently long-term to allow C to invade. In the case of Lotka~Volterra
dynamics in the setting of ordinary differential equations, the competition between A
and B is simply too weak to permit C to invade. We have shown such is sometimes also
the case in the setting of reaction-diffusion equations over bounded habitat patches
subject to absorbing boundary conditions, and we have shown by example how to
modify the interaction between A and B so as to foster the long-term persistence of
C.

Our analysis does suggest how competition between A and B which does not
mediate the persistence of C can be modified to do so. Namely, one should add
a term of the form —B fi1(u1,us)u; to the reaction terms of the first equation and
a term of the form —fsfo(ui,us)us to the reaction terms of the second equation,
where f3; and f» are free positive scale parameters and f;(ui,u2) > 0 for i = 1,2 and
u; > 0, ue > 0. Additionally, we must require that f1(u1,0) = 0 and f>(0,us) =0
for any u; > 0 and up > 0 if it is only the competition between A and B that is to
be modified, and that f1(0,u2) = 0 and fo(u1,0) = 0 for any up > 0 and u; > 0 in
order not to make the coexistence of A and B a more stringent requirement.

To see the importance of this last requirement, consider (1.1) again with o =
@91 = a < 1 and modify the system by adding —Bu3u; to the right-hand side of the
first equation and —Bufua to the right-hand side of the second (i.e., fi(u1,u2) = uZ
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and fa(uz,u2) = u so that f1(0,us) > 0 if ug >0 and fa(uy,0) > 0 if uy > 0). Then
the requirement for the coexistence of A and B is modified from ¢ — aa > 0 in the
case of (1.1) to @ — aa — fa® > 0. This last means that o+ fa < 1 or f < 12
In the modified system, having a componentwise positive equilibrium requires that
a— Qus — U] — ,Bug = 0 and that a — au; — us — ﬁu'f = (. By subtracting the two
equations, it is not difficult to see that if (@;,4ds,0) is an equilibrium solution with

fi; > 0 and g > 0, then either 4y + 1o = 1—5—9‘— or

—(1+a)++/(1+a)? +4af
20 '

1 =g =

>

The modified system will fail to be permanent if @ — 311 — agafls < 0 for any such
equilibrium (’&1,’&2, 0). Since agy > 1 and ags > 1, azyil; + agotie > i1 + g so that
a — a3l — agells < a— @7 — de. "If there is an equilibrium with 4 + @s = %‘-’-,
B < —1—;3 implies that @y + 4s = 1;7‘3 > (1 - a)(7%;) = a. Consequently, permanence
fails in the modified system except possibly if

(—(1 +a)++/(I+a2+4af —(1+a)++/ {1 +a)2+4af8 0)
28 ’ 28 ’

is the unique such equilibrium. In this case

—(1+4+a)+ /(1 +a)?+4ap
B

1+l =

[~33

and a— (@1 +12) > 0 if and only if af+(1+a)—+/(1 + a)? +4aB > 0. An easy calcu-
lation shows that this last inequality is equivalent to 8 > Lla_i) However, f < =2
is necessary for the coexistence of A.and B. The upshot is that the modified systgm
fails to be permanent, illustrating the need to have f1(0,u2) = 0 and fo(u1,0) = 0 as
we suggested.

Finally, there is one additional comment that we should make. The analysis
in sections 2 and 3 depends in a crucial way on species A and B having equal in-
trinsic growth rates. It is of considerable interest to ask whether the phenomenon
we have described in this article (i.e., the collapse of the existing community under
Lotka—Volterra dynamics and competition-mediated coexistence for the modified dy-
namics) carries over to cases in which A and B have unequal growth rates. Our
expectation is that certainly such is the case. A preliminary analysis in the set-
ting of ordinary differential equation models supports this view. However, it also
demonstrates that if the growth rates for A and B are unequal, the equilibrium
corresponding to (@;(8),%2(F)) need not converge to (0,0) as B — co. In such
a case, having the model (with the modified dynamics) predict permanence places
an additional condition on the system parameters which can be understood as a
restriction on the disparity between the growth rates for A and B. Such is not
entirely surprising. Indeed, even in a two-species Lotka~Volterra model, fixed in-
teraction coefficients restrict the disparity between growth rates compatible with
a prediction of permanence. Extending such results to the reaction-diffusion case
in a quantifiably precise manner is an on going effort at this time which should
serve to enhance further the robustness of the phenomenon we have noted in this
article.
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